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Abstract 

 

 A general cumulative damage methodology is derived from the basic relation 

specifying crack growth rate (increment) as a power law function of the stress intensity 

factor.  The crack is allowed to grow up to the point at which it becomes unstable, 

thereby determining the lifetime of the material under the prescribed stress program.  The 

formalism applies for the case of creep to failure under variable stress history as well as 

for cyclic fatigue to failure under variable stress amplitude history.  The formulation is 

calibrated by the creep rupture lifetimes at constant stress or the fatigue cycle lifetimes at 

constant stress amplitude.  No empirical (non-physical) parameters are involved in the 

basic formulation; everything is specified in terms of experimentally determined 

quantities.  Several examples are given showing the inadequacy of Linear Cumulative 

Damage while the present nonlinear damage accumulation method overcomes these 

deficiencies.  The present method is extended to admit probabilistic conditions. 
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Introduction 

 

 Damage accumulation in materials is very important, but very challenging to 

characterize in a meaningful and reliable manner.  As the possible damage accumulates, 

the remaining lifetime under future loads becomes more limited.  The ultimate goal is to 

be able to predict the remaining lifetime as the past history of loading induces a growing 

state of damage.  More succinctly, the common purpose is to be given a complete loading 

spectrum and then predict how far into the loading sequence the material can remain 

coherent before suffering catastrophic failure. 

 

 The conditions under which these damage/lifetime conditions remain as the 

determining factor is creep failure conditions and fatigue conditions.  The creep failure 

case corresponds to polymers under ambient and also high temperature conditions, as 

well as metals under high temperature conditions.  The cyclic fatigue case corresponds to 

virtually all materials.  The present investigation will consider both cases.  Most of the 

derivation will be formed under the creep to failure condition and then it will be shown 

how through notational changes the results can be converted to the cyclic fatigue 

condition.  Often the case of creep rupture is referred to as static fatigue. 

 

 The most common approach to such problems is to recognize that cracks under 

fatigue conditions usually grow in a manner with the rate of growth expressed as stress 

level (stress intensity factor) to some exponent.  This is widely known as the Paris law, 

Paris [1], and has been verified for many materials over many decades of change on log 

scales.  This power law form is then used to predict the number of load cycles until the 

crack reaches a pre-selected, unacceptable size.  Such matters are discussed in two 

excellent sources, Suresh [2] and Kanninen and Popelar [3].  Particular models relate the 

rate of crack growth to nonlinear functions of the stress intensity factor.  Such models 

include those of Wheeler [4], Willenborg et al. [5] and Elber [6].  Chudnovsky and 

Shulkin [7] give a somewhat different approach, which still results in typical lifetime 

forms.  In a different approach, a strength evolution methodology has been developed by 

Reifsnider, most recently in Reifsnider and Case [2002].  The controlling form involves 

an integral representation with a power law time weighting function in the integrand.  All 

of these models have a reasonable physical basis, and the work to be given here, although 

different, shares the same general background. 

 

 Another general approach is that of Linear Cumulative Damage, LCD.  In this 

method increments of damage, expressed as fractions of lifetime at particular stress 

levels, are linearly added together to express total damage and thereby the lifetime.  This 

method is also known as the Palmgren-Miner Law, Palmgren [9], Miner [10].  The 

method is completely empirical, but quite widely used because of its simplicity and 

utility.  However, LCD is widely acknowledged to be inadequate.  This is partially based 

upon its empirical nature and partly based upon its prediction of unsatisfactory results.  

LCD has been discussed by Stigh [11], referring to it as the Life-Fraction Rule.  In 

particular LCD was shown to mathematically be related to the continuum damage 

formulation introduced by Kachanov [12], under certain special conditions. 

 



 The present work is motivated by all of the approaches just described.  In particular 

the power law form for crack growth will be used as providing a solid, physical approach 

for the method.  The damage and life prediction forms will then be converted to integral 

forms superficially similar to those of LCD.  However, detailed comparisons with LCD 

will be made in order to highlight its shortcomings and to display how the present 

methodology overcomes these shortcomings. 

 

 The starting point here will be that of work recently given by Christensen and Miyano 

[13].  This previous work had many of the features to be included in the present 

approach, but it did not successfully compare with typical data for creep rupture 

conditions in some ranges.  In a second paper Christensen and Miyano [14] corrected this 

deficiency in data modeling, but only in the special case of creep rupture.  The work to be 

given here, also corrects this deficiency, but does so more generally than just for the 

special case of creep rupture. 

 

Kinetic Crack Based Cumulative Damage and Life Prediction 

 

  Initially a state of growing damage is taken to be (highly) idealized as the self similar 

growth of a single crack.  This idealization will be generalized later in the derivation.  For 

the central crack problem start with the widely used power law form expressing the crack 

growth rate as a function of the stress intensity factor as  
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where crack size a(t) and stress 
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where ao is the initial crack size and 

! 

" (#)  is the given stress history.  Relation (1) is 

appropriate to the creep conditions that occur for polymers and for metals at high 

temperature. 

 

 Rewrite (2) as 
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The procedure here is to let the crack grow under the imposed load until it reaches the 

size at which it becomes unstable at the stress level that exists at that time.  To carry out 

this process, a further relation between a(t) and 

! 

" (#)  is needed, which must come from 

the failure event. 

 



 In the previous work, Christensen and Miyano [13], the critical stress intensity factor 

at time t was used to provide the needed relationship.  This then gave 
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where 

! 

"
i
 is the instantaneous static strength which characterizes failure for the virgin 

material with initial crack size ao.  Although this procedure is appealing, since it follows 

classical fracture mechanics lines, it did not yield entirely satisfactory results.  The 

corresponding creep rupture times, at constant stress, did give the power law lifetime 

region controlled by exponent, r, but the transition region at higher stress levels than in 

the power law region did not provide a good match with data.  This difficulty will be 

shown later as Eq. (17).  At this point a more general procedure is needed than that 

followed previously. 

 

 Instead of using (4), take the crack size at failure instability as 
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where F( ) is some function yet to be determined.  The form (5) rather than (4) is needed 

to generalize beyond the idealized single sharp crack in order to account for such effects 

as crack interaction, crack coalescence, complex non-ideal conditions at crack tips, other 

types of damage beyond that of idealized cracks such as de-bonding in the case of 

polymeric fiber composites, and a wide variety of other possible non-ideal effects.  In the 

following work, the growing state of damage will continue to be referred to as that of a 

growing crack, but with the understanding this growing damage state may take a much 

more complicated form than that of the idealized single crack.  Nevertheless, the basic 

kinetic relation (1) leading to (3) will be retained and used.  The concept of the intrinsic 

static strength, 

! 

"
i
, also will be retained and will play a pivotal role in the developments 

ahead. 

 

 Combining (3) and (5) gives 
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The inequality in (6) applies for times less than the failure time wherein the crack has not 

yet reached the critical size for failure.  The equality in (6) is at the time then given by t. 

 

 It is convenient to express (6) in terms of non-dimensional variables.  Let non-

dimension stress be given by 
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and non-dimensional time by 
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Henceforth t1 will be treated as a quantity to be determined from data.  On log 

! 
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 versus 

log 

! 

t

~

 scales different values of 

! 

"
i
 gives shifts in the vertical direction while t1 gives 

shifts in the horizontal direction. 

 

 With (7)-(9) the form (6) becomes 
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Now, let 
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giving (10) as 
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where the equality applies at the failure event giving the lifetime.  Determine 
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 from 

the basic creep rupture behavior at constant stress.  Take the given spectrum of creep 

rupture life times as 
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Using (13) in (12) at equality gives 
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 As the final step in this procedure, substitute (14) into (12) and write the inequality 

and equality in separate forms as 
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As noted under (15) the actual crack size has not yet reached the critical size.  Thereafter, 

the crack does reach the critical size and the lifetime 

! 

t

~

 is determined from (16).  Next the 

problem of determining exponent r in (16) is taken up.  Rarely does one have direct data 

on the crack growth rate for a particular material.  It would be advantageous to be able to 

determine r directly from 
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t

~

c ("
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). 

 

 If instead of the procedure just developed, the simplified expression (4) had been 

used, the resulting creep function would have been found to be given by 
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This result from Christensen and Miyano [13] gives the power law range result for low 

stress as 
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however, (17) does not otherwise give a good fit with data.  Thus in this case, the power 

law exponent in the kinetic crack expression (1) is the same as the power law exponent in 

the lifetime expression (18).  The more general result (16) is still taken to have this same 

behavior such that r in (16) corresponds to the inverse slope in the lifetime power law 

region, when it exists as in Fig. 1a.  The case in Fig. 1a is now generalized to the case of 

a power law region as in Fig. 1b.  Finally the form in Fig. 1c with an inflection point is 

simply the limiting case of Fig. 1b type.  Thus exponent r in (16) is determined by the 

inverse slopes in power law regions as shown in Fig. 1a, 1b, and 1c. 

 



 The cumulative damage relation (15) and the lifetime relation (16) along with the 

determination of r from 

! 

t

~

c ("
~

) as shown in Fig. 1 are the main results of this derivation.  

It is to be expected that the critical crack size at time 

! 

t

~

 in (16) depends upon the stress 

level at that time.  Lower stress levels require larger crack sizes. 

 

 There is a simple conceptual test that can be applied to the result (16).  As discussed 

by Christensen and Miyano [13] the lifetime results for constant strain rate testing, CSR, 

gives lifetimes that are shifted on log scales from those for creep rupture.  To test this 

behavior on (16) take the stress history as 
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where 
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"  is a constant.  Substitute this into the equality form of (12), and integrate to get 
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Now eliminate 
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"  from (20) using (19) to get 
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From (14) this can be written as 
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Thus using (22) the lifetime for CSR can be written as 
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The shifting property relating creep rupture and CSR to failure is found to be preserved 

by the general form (16). 

 

 At this point it is useful to compare the present cumulative damage result (16) with 

that from linear cumulative damage, LCD.  The LCD form is  
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whereas the present form, rewritten from (16) is 
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Note that if the front factor in (25) were arbitrarily moved to inside the integral at time 

! 

" , 

the result would be identically that of LCD, (24).  But there is no justification for this 

transposition, it would destroy the kinetics inherent in the present derivation.  LCD, (24), 

can only be viewed as a directly postulated damage relation which is totally empirical.  

Lifetime relation (25) follows from the physical derivation given here. 

 

A Special Form 

 

 There is a special form for creep rupture 
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) of the type shown in Fig. 1a that 

affords considerable advantage in applications, Christensen and Miyano [14].  This is 

given by 
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where p, q, and r are parameters, with r being that for the power law range.  With (26) the 

form (16) becomes 
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LCD is given by 
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 As a first application of the present results and LCD consider the case of residual 

instantaneous strength after the loading of the material for a specified amount of time.  

The problem is as shown in Fig. 2.  The material is loaded at stress 
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 for time 
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 which 

is less than that which would cause creep rupture, but nevertheless does impart some 

damage to the material.  Relation (27) then gives 
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where 
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R  is the residual strength.  Solving (29) for 
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R gives 
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 It is easiest to reason the LCD result directly from (24).  Up to time 

! 

t
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 in Fig. 2 the 

integral has some value say 
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"  which is less than one.  The following instantaneous 

loading to 
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R  must generate a value 1-
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"  to satisfy the equality in (24).  For this integral 

to have a finite value over a vanishing time interval requires that 
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result only occurs for 
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As a simple example take 

  p = 15 

  q = 100 (32) 

  r = 10 

The resulting creep rupture lifetime function is shown in Fig. 3.  Its time variation is 

spread over many decades, which is typical for many materials.  At 

! 

"
~
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1) it is found from (30) that 
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Thus the present residual strength prediction is considerably above the previous load 

level, but still much less than 
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~

 = 1.  In contrast LCD is unable to account for the 

previous accumulation of damage, and simply predicts the undamaged value of 

! 
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R = 1.  

LCD is extremely unconservative in this case. 

 

Cyclic Fatigue 

 



 The previous results for creep damage type of cumulative effect can be converted to 

the case of cyclic fatigue by suitable notation and terminology changes. 

 

 Let f be the frequency in cycles per unit time and n be the number of cycles.  Then the 

elapsed time is 
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Some materials show a frequency dependence, so the present method will be developed 

for fixed frequency and fixed form of the variation within one cycle.  The starting point is 

to define and take as given the standard fatigue relation between constant stress 
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 and 

the number of cycles to failure.  Write this as 
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Where n is the cycles to failure and 
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 is the non-dimensional stress 
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where 
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i
 is the instantaneous static strength corresponding to the maximum tensile stress 

within the cycle of variation. 

 

 With these notational changes the previous lifetime creep damage form (16) converts 

to the cyclic fatigue case as 
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where stress is allowed to have a variable amplitude so long as the wave form and 

frequency are unchanged.  Variable 

! 

" in (35) is the past history variable for n.  Exponent 

r in (35) is determined by the same method as in the creep damage case of Fig. 1.  Any of 

the three forms in Fig. 1 are admissible with the case of Fig. 1a illustrated in Fig. 4. 

 

 The term on the left side of (35) represents the current crack size while the term on 

the right side is the critical size at the stress existing at n number of cycles.  The equality 

in (35) is for the lifetime n in number of cycles. 

 

Probabilistic Generalization 

 

 For extension to probabilistic conditions the terminology of the creep damage case 

will be used.  It will be understood that the same extension applies to fatigue conditions 

through the change of notation given in the previous section. 



 

 Rewrite the deterministic form (16) for the creep case as 
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 The instantaneous static strength, 

! 

"
i
, will be generalized to a probabilistic form 

through any particular distribution function.  With this form then 

! 
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i
 can be written as 
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where 

! 

"(k) is a function of the quantile of failure, k, 0 ! k ! 1.  Function 

! 

"(k) is 

determined by the distribution function, such as a Weibul form or any other one.  Let the 

probabilistic, non-dimensional time to failure be given by 
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" .  Now, the probabilistic form 

of (36) is given by 
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Given the stress history and k, this relation can be solved for the probabilistic time to 

failure, 
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" . 

 

 The result is particularly simple for the creep rupture case itself.  Write the resulting 

probabilistic time to failure 
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"  as a function of the applied stress level and 

! 

"(k).  Then 
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Now use log scales for stress and time giving 
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Where g( ) is a function found from h ( ) after the conversion to log scales.  This form 

reveals a vertical shift along the log 

! 

"
~

 axis with all curves emanating from a single 

master curve. 

 

 The above procedure was illustrated by Christensen and Miyano [13] for the case of 

using Weibul statistics to represent 

! 

"
i
.  The resulting lifetimes can be shown to be of 

Weibul form within the power law range but they are not of Weibul form outside of it.  



Christensen and Miyano [14] provided further experimental verification for these related 

forms. 

 

Examples 

 

 Several examples will be given to illustrate the difference between the present 

approach and LCD.  The creep rupture form given by (26) will be used with parameter 

values in (32).  Examples of two and three stress step levels will be used. 

 

 For two stress levels as shown in Fig. 5, the present form (27) gives 

 

  

! 

t
~

= t
~

1+

1"#
~

2

p$ 
% 

& 
' 

q

#
~

2

r

" t
~

1

#
~

1

#
~

2

$ 

% 
( 
( 

& 

' 
) 
) 

r

 (40) 

 

For LCD form (28) gives 
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The last term in parenthesis in (41) is the only difference in the two expressions.  In some 

cases it will be found to be a crucial difference.  Three step examples are also readily 

formed from (27) and (28).  The specific examples are as follows. 

 

Example 1 
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Example 3 
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Example 4 
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These examples show significant differences between the present method and LCD.  It is 

not easy to prescribe simple rules by which LCD is or is not acceptable except to say that 

for increasing loads the LCD results appear to be satisfactory. 

 

Extended Life Examples 

 

 Now some examples will be given for which the LCD results exhibit the most 

egregious shortcomings.  The examples are for cases where at a constant load the 

material is taken right up to the point of incipient failure.  But just an instant before 



failure the load is reduced to a specified level.  The problem is to determine the 

remaining lifetime at the reduced load level. 

 

 Use the same material specification through 

! 

t

~

c ("
~

) in (26) with parameter values in 

(32).  Take 

! 

"
1

~

 = 0.6 up to incipient failure and then reduce the stress levels to 

! 

"
2

~

 = 0.5, 

0.4, or 0.3 and find the remaining total lifetimes.  At 

! 

"
~

 = 0.6 the creep rupture lifetime is 

 

  

! 

t

~

c  = 157.8 

 

Using expression (40) the present lifetime extensions are found as 

 

  

! 

"
2

~

 = 0.5  , 

! 

t

~

 = 

! 

t

~

c  + 

! 

" t
~

 = 201.7 

 

  

! 

"
2

~

 = 0.4  , 

! 

t

~

 = 594.9 

 

  

! 

"
2

~

 = 0.3  , 

! 

t

~

 = 7,938.0 

 

In the third case the lifetime is extended by a factor of 50. 

 

 When the load level is taken to incipient failure, the LCD method predicts that any 

additional load at any level will produce immediate failure, as can be verified from (41) 

with 

! 

t
1

~

 = 

! 

t

~

c .  Thus for LCD 

 

  

! 

" t
~

 = 0 

 

LCD is unable to account for the fact that the reduced stress level requires that the crack 

obtain an increasing size before it can reach the criticality condition at the reduced stress 

level. 

 

 

 

 

Conclusions 

 

 The main results of the present work are the lifetime forms (16) for creep failure and 

(35) for fatigue.  Exponent r in (16) is evaluated from creep rupture at constant stress 

! 

t

~

c "
~# 

$ 
% 
& 

 as shown in Fig. 1, with a similar operation for the case of fatigue.  These forms 

accommodate prescribed variable stress amplitudes, but in the case of fatigue the 

frequency and wave forms are taken to be unchanged.  In the non-dimensional stress (7) 

and non-dimensional time (8), 

! 

"
i
 and 

! 

t
1
 are calibrating factors that allow vertical and 

horizontal shifts along the log axes.  The basic failure property inputs are the creep 



rupture life times 

! 

t

~

c "
~# 

$ 
% 
& 

 in (16) and fatigue lifetimes 

! 

N "
~# 

$ 
% 
& 

 in (35) both at constant stress 

amplitude.  There are no empirical parameters involved in the theory and final lifetime 

forms. 

 

 Several conclusions can be drawn from the general structure of the theory and the 

examples that have been considered.  Comparing LCD with the present more complete 

and physically based methodology shows that 

 

(i) LCD is acceptable for monotonically increasing loads (stress). 

 

(ii) LCD is not satisfactory for the residual strength problem.  After a given stress history, 

but before failure, the LCD residual instantaneous static strength, 

! 

"
R

~

 is undiminished 

from the virgin material value of 

! 

"
R

~

 = 1.  The present method gives a reduced value for 

! 

"
R

~

 based upon the damage accumulated in the past stress history. 

 

(iii) The following conclusions apply for the extended life problem where the stress 

history is taken up to incipient failure, but instantaneously reduced to a lower stress level 

in order to prolong the life of the material.  LCD gives no additional or extended lifetime 

after the decrease in load level.  The present method gives an extended lifetime beyond 

the point at which the load is suddenly reduced.  This is perhaps the most fundamental 

difference between the two methods with LCD being unrealistically conservative. 

 

 In the other examples that have been considered, some cases showed a good 

comparison between the two methods while others showed a poor comparison, 

sometimes different by an order of magnitude or more.  In general it must be said that 

LCD gives an unacceptable result in an unacceptable number of cases. 

 

 The general conclusion is that this new cumulative damage formalism is no more 

difficult to apply than Linear Cumulative Damage, but it has a physical interpretation 

based upon crack growth and it readily admits generalization to probabilistic conditions. 
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 Figure 1.   Determination of “r” From Creep Rupture 



 

 

 

 

 

 

 

 
 

 Figure 2.  Instantaneous Residual Strength 

 

 



 

 

 

 

 
 

 

 Figure 3.    Creep Rupture Example, Eq. (26): p = 15, q = 100, and r = 10 

 



 

 

 

 

 

 

 

 

 
 

 

 Figure 4.   Fatigue Counterpart of Figure 1 

 

 



 

 

 
 

 

 Figure 5.  Two Step Load 


